

MATHEMATICS HIGHER LEVEL PAPER 1

Thursday 5 November 2009 (afternoon)

2 hours

0 0		Candidate session number									
	0	0									

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 5]	
	When $3x^5 - ax + b$ is divided by $x - 1$ and $x + 1$ the remainders are equal. Given that $a, b \in \mathbb{R}$, find	
	(a) the value of a ;	[4 marks]
	(b) the set of values of b .	[1 mark]

2.	[Maximum	mark:	5

find	the	val	ues	of	n	su	ch	tha	at	(1	+ -	V 3	31)	1S	a 1	rea	al :	nu	m	be	r.								
														 										 		 •	 		
														 								٠.		 			 		
														 	-									 			 		
														 	-									 			 	-	

3. [Maximum mark: 5]

Matrices A, B and C are defined as

$$\mathbf{A} = \begin{pmatrix} 1 & 5 & 1 \\ 3 & -1 & 3 \\ -9 & 3 & 7 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 & 0 \\ 0 & 3 & 1 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 8 \\ 0 \\ -4 \end{pmatrix}.$$

-4-

- (a) Given that $\mathbf{AB} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$, find a. [1 mark]
- (b) Hence, or otherwise, find A^{-1} . [2 marks]
- (c) Find the matrix X, such that AX = C. [2 marks]

4.	[Maximum mark: 6]	
	Consider the function f , where $f(x) = \arcsin(\ln x)$.	
	(a) Find the domain of f .	[3 marks]
	(b) Find $f^{-1}(x)$.	[3 marks]

5. [Maximum mark: 5]

The real root of the equation $x^3 - x + 4 = 0$ is -1.796 to three decimal places. Determine the real root for each of the following.

(a) $(x-1)^3 - (x-1) + 4 = 0$

[2 marks]

(b) $8x^3 - 2x + 4 = 0$

[3 marks]

.....

.....

At a nursing college, 80 % of incoming students are female. College records show that 70 % of the incoming females graduate and 90 % of the incoming males graduate. A student who graduates is selected at random. Find the probability that the student is male, giving your answer as a fraction in its lowest terms.

7.	[Maximum	mark:	9

(a)	Calculate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\sqrt[3]{\tan x}} dx.$	[6 marks]
(b)	Find $\int \tan^3 x dx$.	[3 marks]

8.	[Махітит	mark.	71
Ŏ.	iMaximum	mark:	//

A certain population can be modelled by the differential equation $\frac{dy}{dt} = ky \cos kt$, where y is the population at time t hours and k is a positive constant.

(a) Given that $y = y_0$ when t = 0, express y in terms of k, t and y_0 .

[5 marks]

(b) Find the ratio of the minimum size of the population to the maximum size of the population.

[2 marks]

•		 		-	 	•		•	 	•	•			•	•			•	•	٠		•	 •		•	•		 	•	•	-		•		

.....

9. [Maximum mark: 5]

The diagram below shows a sketch of the gradient function f'(x) of the curve f(x).

On the graph below, sketch the curve y = f(x) given that f(0) = 0. Clearly indicate on the graph any maximum, minimum or inflexion points.

10.	[Maximum	mark:	87

A drinking glass is modelled by rotating the graph of $y = e^x$ about the y for $1 \le y \le 5$. Find the volume of the glass.															'-a	Χi	S,														
					•		•		٠								٠	 ٠			 •	 •	 	•	 •	 -	 	•			
							-													 •	 •		 	•	 -	 -	 				•
																			 •		 •		 	•	 •		 				•
		٠.					-														 •		 			 -	 				•
																					 -	 -	 			 -	 				
			٠.													 •							 				 				
																							 			 	 				•
																					 -	 -	 	-	 -	 -	 	-			
																							 	•			 				
																							 	•			 				
																					 -	 -	 	-	 -	 -	 				
																							 	-		 -	 				

SECTION B

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 21]

(a) The sum of the first six terms of an arithmetic series is 81. The sum of its first eleven terms is 231. Find the first term and the common difference.

[6 marks]

(b) The sum of the first two terms of a geometric series is 1 and the sum of its first four terms is 5. If all of its terms are positive, find the first term and the common ratio.

[5 marks]

(c) The r^{th} term of a new series is defined as the product of the r^{th} term of the arithmetic series and the r^{th} term of the geometric series above. Show that the r^{th} term of this new series is $(r+1)2^{r-1}$.

[3 marks]

(d) Using mathematical induction, prove that

$$\sum_{r=1}^{n} (r+1) 2^{r-1} = n2^{n}, n \in \mathbb{Z}^{+}.$$
 [7 marks]

12. [Maximum mark: 17]

A tangent to the graph of $y = \ln x$ passes through the origin.

(a) Sketch the graphs of $y = \ln x$ and the tangent on the same set of axes, and hence find the equation of the tangent.

[11 marks]

(b) Use your sketch to explain why $\ln x \le \frac{x}{e}$ for x > 0.

[1 mark]

(c) Show that $x^e \le e^x$ for x > 0.

[3 marks]

(d) Determine which is larger, π^e or e^{π} .

[2 marks]

- **13.** [Maximum mark: 22]
 - (a) Let z = x + iy be any non-zero complex number.
 - (i) Express $\frac{1}{z}$ in the form u + iv.
 - (ii) If $z + \frac{1}{z} = k$, $k \in \mathbb{R}$, show that either y = 0 or $x^2 + y^2 = 1$.
 - (iii) Show that if $x^2 + y^2 = 1$ then $|k| \le 2$.

[8 marks]

- (b) Let $w = \cos \theta + i \sin \theta$.
 - (i) Show that $w^n + w^{-n} = 2\cos n\theta$, $n \in \mathbb{Z}$.
 - (ii) Solve the equation $3w^2 w + 2 w^{-1} + 3w^{-2} = 0$, giving the roots in the form x + iy. [14 marks]